3.2.76 \(\int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\) [176]

3.2.76.1 Optimal result
3.2.76.2 Mathematica [A] (verified)
3.2.76.3 Rubi [A] (verified)
3.2.76.4 Maple [A] (verified)
3.2.76.5 Fricas [A] (verification not implemented)
3.2.76.6 Sympy [F]
3.2.76.7 Maxima [B] (verification not implemented)
3.2.76.8 Giac [F(-1)]
3.2.76.9 Mupad [F(-1)]

3.2.76.1 Optimal result

Integrand size = 35, antiderivative size = 133 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {a^{3/2} (12 A+7 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{4 d}+\frac {a^2 (4 A+5 B) \sqrt {\cos (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \cos (c+d x)}}+\frac {a B \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)} \sin (c+d x)}{2 d} \]

output
1/4*a^(3/2)*(12*A+7*B)*arcsin(sin(d*x+c)*a^(1/2)/(a+a*cos(d*x+c))^(1/2))/d 
+1/4*a^2*(4*A+5*B)*sin(d*x+c)*cos(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(1/2)+1/ 
2*a*B*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*cos(d*x+c))^(1/2)/d
 
3.2.76.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.76 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {a \sqrt {a (1+\cos (c+d x))} \sec \left (\frac {1}{2} (c+d x)\right ) \left (\sqrt {2} (12 A+7 B) \arcsin \left (\sqrt {2} \sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sqrt {\cos (c+d x)} (4 A+7 B+2 B \cos (c+d x)) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{8 d} \]

input
Integrate[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d 
*x]],x]
 
output
(a*Sqrt[a*(1 + Cos[c + d*x])]*Sec[(c + d*x)/2]*(Sqrt[2]*(12*A + 7*B)*ArcSi 
n[Sqrt[2]*Sin[(c + d*x)/2]] + 2*Sqrt[Cos[c + d*x]]*(4*A + 7*B + 2*B*Cos[c 
+ d*x])*Sin[(c + d*x)/2]))/(8*d)
 
3.2.76.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 132, normalized size of antiderivative = 0.99, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3455, 27, 3042, 3460, 3042, 3253, 223}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \cos (c+d x)+a)^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3455

\(\displaystyle \frac {1}{2} \int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+B)+a (4 A+5 B) \cos (c+d x))}{2 \sqrt {\cos (c+d x)}}dx+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \int \frac {\sqrt {\cos (c+d x) a+a} (a (4 A+B)+a (4 A+5 B) \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a} \left (a (4 A+B)+a (4 A+5 B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3460

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} a (12 A+7 B) \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx+\frac {a^2 (4 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} a (12 A+7 B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 (4 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {1}{4} \left (\frac {a^2 (4 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}-\frac {a (12 A+7 B) \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {1}{4} \left (\frac {a^{3/2} (12 A+7 B) \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {a^2 (4 A+5 B) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}\right )+\frac {a B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}{2 d}\)

input
Int[((a + a*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x]))/Sqrt[Cos[c + d*x]],x 
]
 
output
(a*B*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]]*Sin[c + d*x])/(2*d) + ((a 
^(3/2)*(12*A + 7*B)*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]] 
])/d + (a^2*(4*A + 5*B)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos 
[c + d*x]]))/4
 

3.2.76.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3455
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^(n 
 + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1))   Int[(a + b*Sin[e + 
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1 
) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + 
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 
 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1 
] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3460
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + ( 
f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp 
[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt[a + 
b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b 
*d*(2*n + 3))   Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] 
 /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]
 
3.2.76.4 Maple [A] (verified)

Time = 18.61 (sec) , antiderivative size = 207, normalized size of antiderivative = 1.56

method result size
default \(\frac {a \left (2 B \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+4 A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+7 B \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+12 A \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+7 B \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(207\)
parts \(\frac {A \left (3 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )+\cos \left (d x +c \right ) \sin \left (d x +c \right )+3 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, a}{d \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right )}+\frac {B \left (2 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \sin \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7 \arctan \left (\tan \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {\cos }\left (d x +c \right )\right ) a}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(300\)

input
int((a+cos(d*x+c)*a)^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 
output
1/4*a/d*(2*B*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+4*A*( 
cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+7*B*sin(d*x+c)*(cos(d*x+c)/(1+ 
cos(d*x+c)))^(1/2)+12*A*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2 
))+7*B*arctan(tan(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)))*cos(d*x+c)^(1 
/2)*(a*(1+cos(d*x+c)))^(1/2)/(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+c)))^(1 
/2)
 
3.2.76.5 Fricas [A] (verification not implemented)

Time = 0.37 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.94 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\frac {{\left (2 \, B a \cos \left (d x + c\right ) + {\left (4 \, A + 7 \, B\right )} a\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - {\left ({\left (12 \, A + 7 \, B\right )} a \cos \left (d x + c\right ) + {\left (12 \, A + 7 \, B\right )} a\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right )}{4 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algo 
rithm="fricas")
 
output
1/4*((2*B*a*cos(d*x + c) + (4*A + 7*B)*a)*sqrt(a*cos(d*x + c) + a)*sqrt(co 
s(d*x + c))*sin(d*x + c) - ((12*A + 7*B)*a*cos(d*x + c) + (12*A + 7*B)*a)* 
sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d* 
x + c))))/(d*cos(d*x + c) + d)
 
3.2.76.6 Sympy [F]

\[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \left (A + B \cos {\left (c + d x \right )}\right )}{\sqrt {\cos {\left (c + d x \right )}}}\, dx \]

input
integrate((a+a*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)**(1/2),x)
 
output
Integral((a*(cos(c + d*x) + 1))**(3/2)*(A + B*cos(c + d*x))/sqrt(cos(c + d 
*x)), x)
 
3.2.76.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1884 vs. \(2 (113) = 226\).

Time = 0.55 (sec) , antiderivative size = 1884, normalized size of antiderivative = 14.17 \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Too large to display} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algo 
rithm="maxima")
 
output
1/16*(4*(2*(a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*sin 
(d*x + c) - (a*cos(d*x + c) - a)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d 
*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
2*c) + 1)^(1/4)*sqrt(a) + 3*(a*arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 
2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c) 
^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c) + 1))) + 1) - a*arctan2(-(cos(2*d*x + 2*c)^2 + sin 
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1))*sin(d*x + c) - cos(d*x + c)*sin(1/2*arctan 
2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))), (cos(2*d*x + 2*c)^2 + sin(2*d 
*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(d*x + c)*cos(1/2*arctan2( 
sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + sin(d*x + c)*sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))) - 1) - a*arctan2((cos(2*d*x + 2*c) 
^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(si 
n(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 
2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c) + 1)) + 1) + a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x ...
 
3.2.76.8 Giac [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((a+a*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c))/cos(d*x+c)^(1/2),x, algo 
rithm="giac")
 
output
Timed out
 
3.2.76.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^{3/2} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}}{\sqrt {\cos \left (c+d\,x\right )}} \,d x \]

input
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2),x 
)
 
output
int(((A + B*cos(c + d*x))*(a + a*cos(c + d*x))^(3/2))/cos(c + d*x)^(1/2), 
x)